Gorilla

Design Documentation

Table of Contents

i R e S SNt IR oS RIS S S MR R R TR S B 2
T Gl B s b Eoo 00 o b i il s T e B e e b i b S 3
A OED s T [R i AN e S Sl o s < e M e S Rl A 4
eI e o et NG Sl AT T L e S LR S S e A CaR NIV T i 1 EORP B 4
S B e BT T e A SN SN S A S R T SO e SRR S AL 4
T T R L A S ST feaer 4 Wt A o N U g ERC R o 1 b 4
R LT T e T SR AR TON s i NS RIS A RN LSRN I PR 6
SRR B sy 2 e G e (I P S P« S Al e S SV [l A A 8
R R R R e e 8
B2 TOMNAIR sy ot i T T S o R A S e e A SRS e 8
3.2 1 =~ Drowiiny U UHONACIONS ... ccuseevissumsiimeisie nimsin o iians i ssassmss ssn s s s g 10
S22 -~ NMaling e DaBana WIOVE: ... ittt s s st 12
320 ~Deieting Botmidany TOMSIONS ... siomisriss saom s issssnssssssmessieniss 13
3.2.4 - Reading Potentiometer Values with ADCO...............ccooooimiiiieeeiccieeeeee e, 15
3248 -50Und ENBGSUISIN TR ... oo inviivss dssonsirinusssnasssssanis srsmstbinsevsssonssissiiniine 16
e R e e e 17
TG ST o e T e e L a0 N P IO L i g
D2 TR e LB IR o . i i e e e A 17
4.0.3 Testing the Launch and Reset BUttONS ..., 17
4.0.4 Testing the Angle and Speed Potentiometers.............c.ooovevieeeeeeeeeceeeeeee, 17
4.0.5 Testing the Wind Difficulty Switchesccco e, 17
4.0.6 Testing Boundary Conditions and Game Operation...............ccococeeeeiceeeeeerceee e, 18
RS o (T o RO S o S SR S e ey SRR S OIS O 18
0.0 = BRDGIIDES ..o s st o et s oS S R S A o i 19
B:1.= HiidWare SORBIANING ..o o tuoimbmmam o bS8 s s s R S AR 19
B2 = DNo i byt s s s s 20
6.2.1 - ASM codetor LOCD Gontiol COTAIEINGS ...y ismismmssssmsssemsvessssmsssss sy 20

6.2.2 - C header for LCD.ASM commands and MemoOrY............c.cceeeueemememmemmrnneneeeeens 23
G 2.3 CORLER L DROOIBI. ... oo vinisimin saposinsidon v Shsnhs sion s ms bR eR Sopva sty s skpas o Bt 24

Table of Figures

Figure T GRS SEEAD SI0TBON. o foiiuitian i mmsin st mans b sl st e o B T s m s o i 6
Figpire 2: CORHEA CAMBEPIAY SOPBON.omiomeesisnsssiosimmssssesesmansortsssass semsnstesssntmssessson r'4
Figure 3: GORILLA Top Level GAME FIOW CBaIcocoiomerrrreramersansssessasvinssnsassasssssssinse &
Eigure 4: GORILLA Hardware BIOGK DERGIIIN. ..o iiammim s sssiiss issisisitvitisimie 8
Figure 3-5: GORILLA Hardware Block Diagram.................cccoooiiiiiiiiiiiiecceceeeeeeeee e, 8
Figurat: GORILEA SOIWSIE FIOW TN ... iciiiiminsiimiminians isssssrii s ninsn 10
FigUie 2 il CISECIOn § UNOBION oo ionbonrvecinibisiahsnssn v dinbis prussiiss s bsssvsniadaihs sxmss sin s 11
i e B T e NSO SR S ARSI S O SR Bl e 11
Figtve S SHRGRIRGIEITINE .| ot et et s ey oon i b e o e 11
Figure 10: Banana Craphics ToF MIOHON..............coccoovmisssssisssossssmsssssssssss srsssossssasssssnsriesess 12
PIEUES 15 BB URCIEE LRI .o s b iatai i its bt s isns st ni i i iin 13
Figue 12: SERan BOUWHAN GOHEo sty mesie s o s msasss st st sobe 14
FIgQne 13 BUIKING BOWIKIETY UOMELoorremmesemimsrarsnassonsrassersrsaansissssan armns ot srnsonass 14
T e e e T e e A S e SRR S D S AS U RO 15
Figure 15~ GORILLA Top-Level SCHBIMANCo i eserssssmssssssssansassssssssssnsnsasssssnsasss 19
Figure 16 - GORILLA Power Supply Schematic.................cccoieiieiiiiiicie e, 19

0.0 - Introduction

This document describes a variation of Microsoft's GORILLA, which was released
with MS-DOS 5 in 1991. GORILLA is a two player turn-based game. Players begin
at a random location atop opposing skyscrapers along a city skyline and take turns
lobbing explosive bananas at each other until one of the players is destroyed.
Random skylines and winds present additional challenges to players as they attempt
to vanquish their opponents. This variation of GORILLA is different from the original
in that it is designed to be played on a portable hand held device.

1.0 - Scope

This document describes the software and hardware design of the GORILLA hand-
held video game. It includes the requirements, dependencies, and theory of
operation. Design details and requirement validation testing are described at length.
Complete software code and schematics are included in appendices at the end of
this document.

2.0 - Design Overview

2.1 Requirements

The given requirements for the GORILLA video game are as follows:

1. The system shall run on an external 9v DC supply.

2. The system shall use a 64x128 pixel LCD to display the skyline, gorillas, wind
speed indicator, launch speed indicator and launch angle indicator.

3. The system shall have two buttons. One reset button and one launch button.

4. The system shall have two potentiometers located near the LCD that can be
used to adjust banana launch speed and angle.

5. The system shall have two DIP switches to adjust difficulty, one for each
player. If a player's switch is off, the wind speed shall be set to zero when he
launches his banana.

6. Upon reset, the system shall display the words "Ready" and "Press Launch
Button to Start” in the center of the LCD display. The skyline and gorillas may
be displayed in the background but it is not required.

7. When the launch button is pressed initially, the system will randomly select
and display
a. the skyline
b. the wind speed
c. the gorilla positions

8. Player 1 shall always play the leftmost gorilla and shall have the first turn. The

rightmost gorilla is played by player 2. The system shall indicate whose turn it
is.

9. A turn shall consist of a player
a. adjusting launch speed and angle using the knobs
b. pressing the launch button
At this point, the system shall animate a banana launched from one gorilla
that follows a trajectory consistent with requirement.

10. The turn ends when the banana
a. strikes a building in the skyline and explodes
b. strikes either gorilla and explodes
c. traverses the left or right boundary of the LCD display

11. The velocity of the banana shall be Vx = Vxo + Wt, Vy = Vyo - gt where
(Vxo,Vyo) is the initial velocity, w is proportional to the wind speed, and g is
constant. If the banana goes off the top of the LCD display, the system shall
continue to compute its trajectory but will not display it until its position is once
again within the bounds of the LCD display.

12. The launch speed and angle must be accurately indicated on the LCD display
while adjustment are being made.

13. The system shall generate a sound when a banana is launched and a
different sound when the banana explodes.

14.When a banana hits either gorilla, the game is over, and "Game Over" and
"Press Launch Button to Start" shall be displayed in the middle of the LCD
display. The remaining gorilla and skyline may be displayed in the
background, but it is not required. The system will remain in this state until the
launch button is pressed, at which point a new game begins with a random
skyline, wind speed and gorilla position.

15.When a banana hits the skyline and explodes, it may either erode the skyline
or leave it unchanged.

2.3 Theory of Operation

Upon reset or power-up, the system will display a start-up screen on a 64x128 pixel
LCD with instructions to begin the game. Players will have the option to set the
difficulty of the game using a DIP switch to turn winds on or off during their turn.
Once the "launch" button is pressed, the game begins. A city skyline is then drawn,
made up of 8 adjacent skyscrapers, each at random heights of up to five building
segments (Figure 1:E). Also, a random wind speed between 0 and 4 pixels per
frame (Figure 1:C) and direction (Figure 1:D) is determined and displayed in the
upper right hand corner of the LCD. Each player's gorilla will be placed on one of
three buildings on their respective side of the screen. The two buildings in the center
will act as a "no-man's-land”, to alleviate an unfair advantage in the event that two
players would be placed right next to each other. Player 1 will always be positioned
on the left side of the screen and will go first. Player 2 will follow. A banana will be
positioned above a player indicating their turn. Each player will continue taking turns
until one of the gorillas is destroyed.

Two potentiometers are used to select a trajectory and initial velocity for the banana.
An indicator in the top left corner of the LCD will display the angle from 0 to 90
degrees (Figure 1:B), with 0 degrees being the horizontal direction and 90 degrees
being vertical; and an initial speed between 0 and 14 pixels per frame (Figure 1:A)
for the banana's trajectory.

c A 128

111
'TIT BEEL
TITL TIT: :
TIT TIT. !!!!Illll
TR R
2 3 4 5 6 7

)
E

Figure 1: GORILLA Set-up Screen

Pressing the launch button will initiate a throw, causing the banana to move across
the screen according to Newton's law of motion, taking into account gravity, initial
trajectory, and the wind vector. An audible "beep" will also accompany the throw
sequence. Should the banana move beyond the top of the LCD, it's trajectory will
continue to be computed, but it will not be displayed until it returns back into the
viewable portion of the screen. If the banana exits either side of the screen (Figure

2: A) the turn will end and the next player will begin their turn. If the banana makes
contact with the skyline, it will destroy the building segment which it comes into
contact with and shorten that skyscraper by one segment (Figure 2: C). An audible
"crash" sound will accompany the destruction of a building segment. If the banana
hits one of the gorilla's strike zone, the game will end and issue a short melody.

&

Figure 2: GORILLA Game Play Screen

Figure 3 contains a flow chart describing the overall game process.

Reset

y

Display Start
Screen

GORILLA Game
Play

Yes No

Figure 3: GORILLA Top Level Game Flow Chart

3.0 - Design Details
3.1 Hardware

GORILLA is implemented on an C8051F020 microcontroller development board and
a customized daughter board with user interfaces; including an LCD, two (0 - 50kQ)
potentiometers, two push buttons, and eight 2-position DIP switches. The LCD is an
ST7565R (65x132) dot matrix LCD Controller/Driver, which was manufactured by
Sitronix. Only two of the eight DIP switches are used for GORILLA. Each player will
use their DIP switch to select a difficulty level by turning on/off crosswinds. The
potentiometers are read via a 12-bit ADC, which is built into the C8051F020, and are
used to select the banana's trajectory and speed. Game sounds are produced by an
AST-03208MR-R (8Q) speaker and a TDA7052 amplifier. See Section 6 for a
detailed schematic. f

ST7565R Player 2 PB
(65x132)LCD
Controller/Driver
Player 1 PB Player 2 DIP
Player 2
Player 1 DIP Daughter Board (0-50KQ) POT
Player 1 TDA7052A
(0-50KQ) POT Amplifier
9V Power C8051F020 BIQ
Suppl i troller
upply Microcon Speaker

Figure 4: GORILLA Hardware Block Diagram
Figure 3-5: GORILLA Hardware Block Diagram

3.2 Software

The software for GORILLA is written in both C and Assembly. Functions used to
control the LCD are written in Assembly and are ported into C. The C portion is
divided into six functional segments; set-up, drawing, tracking, monitoring,
outputting, and determining the winner.

The set-up segment includes clearing the screen and prompting the user to start, it
also includes displaying "Game Over" when a game is complete and again
prompting the user to start. The drawing segment consists of drawing the skyline,
the gorillas, and the current position of the banana. Drawing also consists of
displaying the text for the banana trajectory and wind vector. See section 3.2.1 for
details on drawing the buildings, gorillas, and banana's.

The tracking segment covers computing and tracking the position and velocity of the
banana and keeping track of the current location of the two gorillas. See section

3.2.2 for details on tracking the bananas. The monitoring segment involves
monitoring all inputs; such as the potentiometers, the DIP switches, and the push-
buttons. The outputting segment produces game sounds at the appropriate time and
sends commands to the LCD to clear and refresh the screen at a rate of 60hz. The
last functional segment is self-explanatory. When either of the gorillas is destroyed,
this segment determines which gorilla won and prompts users to start a new game.
Figure 6 contains the software flowchart illustrating how each of the segments is
executed and how they are related to all of the other segments.

Reset

Ready
Promptuserto start

Launch
button
pressed

Generate RAND

Calculate Posmms

Draw Gorillas

1

Player=1

[Draw Buﬂcﬁng

%l Check Wind Enable

Draw Wind Vector

Read Potentiometers

Calculate Trajectory 1
1

Draw Banana Vector

Refresh Screen I

Launch
bution
pressed

l Lob Sound I

lncrement Banana
Posmon

| DrawBanana |

I Refresh Screen

[

]

|

|
DrawBanana ‘]}@—

|

|

Calculate Next
Banana Posmon

Launch
button
pressed

|

Game Over
Promptuserto start

4

_|

Player=1

L

Player=2

Banana
Reached

Edge

Banana
Hit
Building

Banana

[Explosion Sound l

|

Hit Gorilla

Figure 6: GORILLA Software Flow Chart

3.2.1 - Drawing the Characters
Text characters are handled with the put_character() function provided by the

LCD.asm program. This program links the ASCII table in the LCD.asm program to
the 1040 bytes of external memory allocated for the LCD display. A simple pointer
conversion is used to transfer characters from the table to the display memory. A

5x8 font is used to display ASCII characters.

10

void put_character(char ch, unsigned char zdata #*loc)
{

extern unsigned char code font5z8[]:;

unsigned char n;

unsigned char code #=ptr;

ptr = font5x8 + (ch-32)=5;

for {n=0: n<5: ++n)

{
}

} /7 end put_character]

®loc++ = * ptr++;

Figure 7: put_character Function

To handle drawing the gorillas and buildings, simple characters where created and
ASCII characters were hijacked from an ASCI!I table in the LCD 5x8 ASCII table.
Figure 3-2 shows the pixel design of the gorilla and building segments along with
their equivalent ASCII characters. Each character uses the same 5x8 font
characteristics as the ASCII characters. This way it is easy to use the same

put_character() function for writing text to place the building segments and the
gorillas.

+'

Figure 8: Gorilla Characters

Figure 9: Building Characters

To draw the buildings at the appropriate height, an 8 element array is created to hold
the random 1 to 5 segment heights for each of the 8 skyscrapers. Buildings begin at
the last 16 pixel segment of the display (bottom right) and are written from right to
left, bottom to top. As each segment is written, the corresponding array value is
decremented. This process takes place until all of the array values have reached
zero, meaning no more building segments. Gorillas are then position in one of their
three possible positions. They are placed at a height equal to the height of the
skyscraper in the given lateral position.

11

The banana characters employ a slightly different method for writing. They utilize the
same 5x8 font employed for regular characters, but they are written with a different
function. This is because the banana pixels are written to the display with a logic
"OR" to allow the banana to appear in the foreground instead of erasing the
background. See the put_banana() function in section 6 for details. Bananas are
initially placed above the player who's turn it is.

3.2.2 - Making the Banana Move

To make the banana appear to move upward, it is necessary to draw 16 positions of
the banana. This is because the banana needs to move upward one pixel at a time.
Since each character column is 8 pixels tall, it is necessary to span two pages while
making the banana move upward. This is done by first calculating the Y-position of
the banana and dividing it by 8 to get the initial page value. The modulus is then
taken to get the pixel height of the bottom of the banana relative to the current
character position. If the modulus is zero, character 128 is chosen which is the
banana's first position. For each modulus value, the character position is
incremented up to eight times. If the page value is greater than one page, then a
character eight positions greater than the lower page character is written onto the
second page which corresponds to the character on the page below. For example, if
character '130' is written onto page one, then character '138' is written onto page
two. Figure 10 illustrates how the characters are drawn and stored in memory. They
are positioned on top of each other to demonstrate how they are divided between
the two pages.

136[137] 1381 I 139' ! 140] 141 142 l 143
128 129 ! 130 I I 131 l 132 133 I | 134 135

Figure 10: Banana Graphics for Motion

The code for moving the banana can be found in section 6, the appendix, under the
function named display_banana(). This provides a simple way to make the banana
appear to move up while incrementing the Y-position only one pixel at a time.
Making the banana move in the X-direction is much simpler and only requires that
the character location be moved one pixel at a time.

12

It is possible to calculate the trajectory by simply calculating the X and Y values
separately and then combing the two into a single vector. The following figure
contains code snippets used to calculate the trajectory of the banana.

banana_V¥Vx = (x_factor*speed)-/18; /7 initial x velocity
banana_Wy = (y_factor*speed)-18: /7 initial y velocity

F7o1d calculate _trajectory(void)
if{player == 1)
{
banana_x = (banana_x + banana_Vx + wind_speed):
}
2

{
¥

banana_y = (banana_y + banana_Vy - gravity*time):

el

w

banana_x = (banana_x - banana_Vx + wind_speed):

}

Figure 11: Banana Vector Code

A more simple method was chosen instead of creating a trigonometric function or
even a trig table for calculating the relative magnitude of the X and Y directions. The
X and Y magnitudes are derived directly from the angle potentiometer. The Y value
ranges from 0 to 90 and the X value is calculated as (90 - Y value). The overall
values are then divided by 90 to get inversely proportionate values. Thus, if the
angle is set to 90 degrees, then the Y factor is '1' and the X factor is '0'. Likewise,
when the angle is set to 0 degrees, then the X factor is '1' and the Y factor is '0'.
When they are equal to each other, both are 1/2 which corresponds to 45 degrees.
Thus, the banana velocity in the X and Y directions is calculated by multiplying the X
and Y factors, respectively, by the speed. The wind speed is factored into the X
velocity and the effects of gravity with respect to time are factored into the Y velocity.
Once this is accomplished, the X and Y positions are tabulated by simply adding the
current position to its respective velocity every frame.

3.2.3 - Detecting Boundary Collisions

It is necessary to monitor the position of the banana with respect to other objects in
the game; such as buildings, screen edges, and gorillas. To check that the banana is
within the bounds of the display, it is simply necessary to compare the current
position to the dimensions of the display. However, to make sure that the banana
doesn't appear on the wrong side of the display in the X direction, it is necessary to
limit the X dimension to 0 to 125 pixels. This is because the banana is three pixels
wide and will begin to appear on the left side of the screen if the banana position is
allowed to be greater than 125. The Y position is limited between 0 and 64 pixels. If
greater than 64, it is only necessary to stop drawing the banana. If less than 0, it is
necessary to end the turn. Figure 12 contains a snippet demonstrating how to
monitor the position of the banana.

13

if{(banana_y > 0) && (banana_y < 63) && (banana_x > 0) && (banana_x < 125))
{

display_banana(banana_x. banana_y):

if{(banana_x < 0) || (banana_x >128) || (banana_y < 1))

collision_flag = 1;

y

Figure 12: Screen Boundary Code

The method for checking if the banana has collided with a building consists of
comparing the current 'lot' position of the banana, that is its position divided by 16,
which is the same width of a building. Once the lot position is determined, the height
of the building at that position is compared to the Y value of the banana's position. If
the banana's position is higher it is above the building. If it is lower, then it has
collided with the building and a collision flag is set. The banana's position is
compared to every building to check if it has collided with one of them. This is
illustrated in Figure 13.

for(n=0:n<{8:n++)
if ((hanana_x >= (n*16)) &% (banana_x <= {n*16 +16)) && (banana_y <= skyline[n]=8))

skyline[n]--;

collision_flag = 1;

hit = 1; 7/ play hit sound for 200 cycles
duration2 = 200;

¥

}

Figure 13: Building Boundary Code

The same methods are used to detect when the banana has hit one of the gorillas.
The only difference is that a strike zone is defined for the gorillas which moves with
the gorillas as they are placed in random locations. The gorilla strike zone is defined
as a 16 pixel by 16 pixel square which surrounds the gorillas and covers the building
segment upon which it is standing. The banana position is defined as the lower left
pixel of the banana. See Figure 14 for details. As the banana moves, its position is
compared to the strike zones of each of the gorillas. If it moves inside one of those
boundaries a collision flag is set, a winner flag is set, and the game ends. The 16x16
strike zone is important because it limits the speed at which the banana can move. If
the banana is allowed to move faster than 16 pixels per calculation, it would be
possible for the banana to pass through a gorilla or building without hitting it. The
16x16 boundary can also effect game play. It is possible for the gorilla to throw the
banana at an angle of 0 degrees, but it is necessary to throw faster than 8 pixels per
calculation, otherwise gravity will pull the banana into the strike zone and the gorilla
will effectively commit suicide. However, players will learn to cope with this limitation

14

in the same manner that they have to cope with the mistake of throwing the banana
straight upward only to have it return to their feet.

Figure 14: Gorilla Strike Zone

3.2.4 - Reading Potentiometer Values with ADCO0

The 8051 microcontroller is equipped with a 12-bit analog to digital converter. This
ADC is used to read both potentiometers for angle and speed selection. For
GORILLA, ADCO inputs are configured for single-ended inputs with a reference
voltage of 2.4V and an input gain of 1. The pertinent registers for controlling ADCO
are REFOCN, AMXOCF, ADCOCF, ADCOCN, and EIE2. Detailed information
regarding ADCO registers can be found in the 8051 datasheet. ADCO settings are
described in the GORILLA.C code found in section 6. Both potentiometer readings
are handled by a single Interrupt Service Routine (ISR) which is triggered by the
ADC complete interrupt found in the EIE2 register. In the ADC_complete ISR, a
toggle variable is used to switch between potentiometers, read the current value,
initiate the read for the next potentiometer value, and reset the conversion flag. A
second ISR triggered by the timer 0 interrupt is used to set ADOBUSY. Because this
game is not dependent on specific input voltage values, arbitrary ranges for speed
and angle were selected to make the mathematics of calculating vectors easier. The
speed potentiometer range is set between 0 and 14, which is less than 16 (the max
allowable speed of the banana as determined by strike zone size). The angle value
is limited from O to 18 which provides for 5 degree (90 degrees / 18) increments per
value, which is just slightly more fine than is possible given that the banana's velocity
must be limited to 16 pixels per frame. For GORILLA, the maximum realizable angle
resolution can be only (90 degrees/16) which is 5.6 degrees. For more detail
regarding the use of ADCO to collect speed and angle data, see the ADC_complete
ISR in gorilla.c which can be found in section 6.

15

3.2.4 - Sound Effects Using DACO

There are three sounds generated for the GORILLA game. A short 'beep' tone is
issued when the banana is launched. When the banana strikes a building or another
gorilla, a short 'crash’ tone is generated. The last sound is actually a short three-tone
melody to signify that the game is over. To do this, the on-board DACO of the 8051 is
employed. To keep code size compact DACO was set to run at 360 Hz constantly.
To change the pitch of the tone, different array values are used. For GORILLA, it
was decided that the prompt arrays title[], prompt], and restart[] would be adequate
for generating tones, despite their non-sinusoidal characteristics. Title[] is set equal
to " GORILLA ", prompt[] to "Press Launch", and restart] is set to "Game Over!".
Using just these arrays at 360 Hz it is possible to generate three distinct digital
beeps that have a very retro tone. Each tone is generated for a duration of 200
cycles and simply repeat the array values over and over until the duration is up. To
produce the crashing sound, the array pointer is set to the beginning of prompt[], but
is then allowed to run past it into code space, reading whatever random data it may
encounter. This produces a nice retro "thunk” sound which maintains the theme of
the GORILLA game.

A simple ISR triggered by the timer2 interrupt is used to generate the tones
necessary for the game. Tone flags and a duration interval are used to initiate
specific tones. The tone flags are reset when the duration interval variable is
decremented down to zero. For the non-crash tones, a phase variable is used to
move the tone pointer back to the beginning of the array to re-read the artificial
wave.

16

4.0 - Testing
4.0.1 Testing Power Supply

To verify that GORILLA meets the 9V power supply requirement, a multi-meter was
used to measure the unregulated power from the power supply. A measurement of
9.0 volts was noted. This voltage remained constant during the operation of the
GORILLA game, indicating that this power supply is adequate.

4.0.2 Testing the LCD Display

The LCD was tested by initiating the game sequence and drawing the skyline,
gorillas, banana, wind vectors, and throwing vectors. All graphics were compared to
design specs. The skyline array was compared to the actual position and height of
each skyscraper. The location of each gorilla was compared to the position variable
and gorilla height variable. The speed value was correctly located in the upper left
hand corner along with the angle value. Each value was accurately displayed when
the potentiometer were swept through their full range. Wind speed and direction
were correctly displayed in the upper right hand corner. The LED backlight came on
and remained on during testing, indicating proper function.

4.0.3 Testing the Launch and Reset Buttons

After power-up, the launch button was pressed. The set-up screen was then
displayed, allowing for accurate manipulation of speed and angle variables. The
launch button was pressed a second time, which initiated a banana launch. The
reset button was then pressed, which returned GORILLA to the first prompt page
stating that the game was ready to be played.

4.0.4 Testing the Angle and Speed Potentiometers

In the set-up screen, the angle and speed potentiometers were transitioned through
their full ranges. The output on the LCD was compared to the variable values and
were determined to be correct. The Speed POT successfully displayed the values 0
to 14. The Angle POT successfully displayed the values 0 to 90.

4.0.5 Testing the Wind Difficulty Switches

In the set-up screen, the Wind Difficulty Switches were turned off and the launch
button was pressed. The wind value of 0 was accurately displayed for the wind
speed. A banana was launched at a 90 degree angle. The banana traveled straight
up and came back down on the gorilla, indicating that there was in fact no wind. The
reset button was pressed to start a new game, this time the wind was turned on. In
the set-up screen the new wind speed was compared to the wind speed variable and
found to be accurate. Again, a banana was launched at an angle of 90 degrees. This
time, the banana traveled in the indicated direction of the wind speed and at the
correct speed.

17

4.0.6 Testing Boundary Conditions and Game Operation

In the set-up screen, the angle of the banana and speed were set to lob the banana
off of the edge of the screen without striking any objects. As expected, the banana
was launched, the launch sound was played, and banana followed the prescribed
trajectory until it reached the edge, which ended the turn and the banana was placed
on the next player. The angle and speed of the banana were then set to intercept a
building segment. Upon launch, the launch sound was played, the banana followed
the prescribed trajectory, which hit the building segment. When the banana hit the
building segment, a crash sound was issued and the buildings height was reduced
by one segment. The turn ended and the next player received the banana. The
angle and speed of the banana were then set to intercept a gorilla. The launch
button was pressed and the gorilla was hit. When the gorilla was hit, the game
ended and the Game Over melody was played. The screen was erased and "Game
Over" was displayed along with "Press Launch." This procedure demonstrated that
GORILLA was operating correctly.

5.0 - Conclusion

GORILLA was successfully tested and demonstrated. Design, construction, and
implementation were all completed within the three month deadline prescribed by
the project. Through testing, all requirements were verified and found to be
complete. A control group, consisting of 2 children and 2 adults, was employed to
ensure that GORILLA not only met the given requirements, but was also fun to play.
GORILLA received a positive reception by the control group. Though, there were
some concerns about graphic resolution and the design of the gorillas. An updated
version of GORILLA will likely have a more gorilla-like character. Respondents were
unsure whether or not the gorilla had a head, or was even a gorilla. Respondents
also suggested that the game keep score of which player was ahead. An updated
version may be more successful if high scores are tracked and if levels became
increasingly difficult, possibly with new types of objects to throw back and forth.
Despite these concerns, it was agreed that GORILLA was a success.

18

6.0 - Appendices

6.1 - Hardware Schematics

1 2 o ! 1 4 2 6 | 7 8
A A
e F
B 1 Us$1 o d ﬂ B
CB8051F020
e o c
—
- k3 = ‘ 3
j i Resistors Values in Ohms k‘;‘:ﬂ* . 31
D Analog Ground ’ s] 3! i D
Pigital Ground _L_ H‘E E H ﬂﬁﬂ B . 5
fnalog Supply W =
Pigital Supply é FORILLA Hand-Held Video Game
Michae! Petersen EE3T0 Pr Brown
=
April 2013 Jersion 1
1 I 2 I 3 I 4 I 5 3 1 7 I 8
Figure 15 - GORILLA Top-Level Schematic
RN
2
2 ohm
ot e SHORT J2.1 to J2.2
T_ R10 2
5 VUNREG 1 2 1
u2 2 ohm +3VD2 VDD AV+
P1 - F LM2937IMP-3.3 . O A O
) 1 ” 2 i out 2 1 AN 2
iL GND 2 ohm
1
2
o -Lc2 1 +H 3 Ao Llen dog L 14 _I65
—— WF i — 10 —— WF —— 1.0F —— .WF W—TOuF 771 .
u 8 .
ssm;I; =

Figure 16 - GORILLA Power Supply Schematic

19

6.2 - Software Code

6.2.1 - ASM code for LCD control commands

$NOMOD51
$include (c8051f020.inc)

program header

;led.asm

: Michael Petersen

; Original Code Date: 3/12/1013

; Modified 4/7/2013 (adapted for GORILLA)

 EE 3710

; Dr. Brown

; This program contains commands for a 64x128 LCD display

xseg at0 ; reserve 1000 bytes for lcd map
led_map: ds 1024

’

public lcd_map, blank_screen, lcd_init, refresh_screen, font5x8;
?pr?lcd segment code
rseg ?pr?lcd

coniguration bits

mov EMIOCF, #00101001b ; split mode with bank select

mov EMIOTC, #0Ch ; set pulse width to 180 ns

LCD_CMD equ 1000h ; high byte for memory map command external memory
LCD_RESET equ OFOh ; deasserts wr, rd, and rst

LCD_DAT equ 1100h ; high byte for memory map data external memory

blank screen functions

blank_screen: ; initializes the external memory for the LCD display controller
; destroys r1, 10, dptr
mov r1, #8 ; set counter to 8 for pages
mov r0, #128 ; set counter to 128 for columns
mov dptr,#0h ; start at external RAM location 0
mov a, #0 ; initialize 1 bit
loop_1: ; initializes the bits for external RAM
movx @dptr, a ; store bit from acc to external memory
inc dptr
djnz r0,loop_1
djnz r1, loop_1
ret

local wcom function

wcom_a: mov 0,a ; save acc in RO while we check BUSY
wcom: mov EMIOCN #HIGH LCD_CMD ; command/status register
weom1: movx a,@r0 ; r0 has no relevance here

jb acc.7,wcom1 ; wait for not BUSY

20

mov
movx
ret

wdat_c:
wdat_a:
wdat:
wdat1:
ib
mov
mov
movx
ret

a0 ; get the actual data to write

@r0,a ; write the command, r0 is irrelevant here

movc a,@a+dptr ; lookup byte to write (handy for fonts)
mov r0,a ; save it in RO while we check BUSY
mov EMIOCN #HIGH LCD_CMD ; command/status register
movx a,@r0 ; 10 has no relevance here
acc.7,wdat1 ; wait for not BUSY

EMIOCN#HIGH LCD_DAT ; data register

a,ro ; actual data to write

@r0,a ; write the data, r0 is irrelevant here

; initialize lcd function

led_init:

mov p4, #not LCD_RESET

mov
mov
mov

orl p4, #.CD_RESET

mov
call
mov
call
mov
call
mov
call
mov
call
mov
call
mov
call
mov
call
mov
call
mov
call

emilcf #28H ; B5: P4-7, B4: non-muxed, B3-2 split bank
emiltc,#0CH ; pulse width 4 sysclock cycles
p74out, #0FFH ; push-pull

RO #02FH ; Boost on, voltage Reg and follower on
weom

RO,#0A2H; ; 1/9bias selected

wcom

RO #0A1H ; reverse segment driver output seg131-seg0
wcom

RO#0COH ; common output mode com0 to com63
weom

RO #024H ; Ra/Rb ratio

wcom

RO #081H ; electronic vioume mode set

wcom

RO, #026H ; contrast

wcom

RO,#040H ; display line address = 0

wcom

RO #0A6H ; normal video

wcom

RO #0AFH ; display on

wcom

refresh screen function

refresh_screen:

mov
mov

page_loop:

mov
call
mov
call
mov
call
mov
byte_loop:
movx
call
inc
djnz
inc
cjne
ret

dptr#0 ; start of 1k block of memory
12,#0BOH ; command to set page number to 0

ar2 ; set page numbern,n=0,1,2..7
wcom_a

a #04H ; set column number to 4. If LCD is not
wcom_a ; inverted, you will want to set column
a#10H ; number to 0.

wcom_a

13,#128 ; copy 128 bytes

a,@dptr ; get byte from memory

wdat_a ; and write it to the LCD

dptr

r3,byte_loop

r2 ; advance to next page, but bail if it is 8 (B8)

12, #0B8H,page_loop

21

